How do you prove #sin4x = 4sinxcos^3x - 4sin^3xcosx#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer George C. May 28, 2015 I'll start from the double angle identities: #cos 2theta = cos^2 theta - sin^2 theta# #sin 2theta = 2sin theta cos theta# Then: #sin 4x = 2sin 2x cos 2x# #=2(2 sin x cos x)(cos ^2x - sin^2 x)# #= 2(2sin x cos x cos^2 x - 2sinx cos x sin^2 x)# #=4sin x cos^3 x - 4 sin^3 x cos x# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 30497 views around the world You can reuse this answer Creative Commons License