How do you prove sin[x+(pi/6)] + sin[x-(pi/6)] = (sqrt3)/2?

1 Answer
Nov 12, 2015

sin(x + pi/6) + sin(x - pi/6) = sqrt(3)sin(x)

Explanation:

Using the trigonometric identity
sin(alpha + beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta)

sin(x + pi/6) = sin(x)cos(pi/6) + cos(x)sin(pi/6)
and
sin(x - pi/6) = sin(x)cos(-pi/6) + cos(x)sin(-pi/6)

As the sine function is odd (sin(-x) = -sin(x)) and the cosine function is even (cos(-x) = cos(x)), we get

sin(x - pi/6) = sin(x)cos(pi/6) - cos(x)sin(pi/6)

Thus, adding gives us

sin(x + pi/6) + sin(x - pi/6) = 2sin(x)cos(pi/6)

As cos(pi/6) = sqrt(3)/2 we get the result

sin(x + pi/6) + sin(x - pi/6) = sqrt(3)sin(x)