Using the trigonometric identity
sin(alpha + beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta)
sin(x + pi/6) = sin(x)cos(pi/6) + cos(x)sin(pi/6)
and
sin(x - pi/6) = sin(x)cos(-pi/6) + cos(x)sin(-pi/6)
As the sine function is odd (sin(-x) = -sin(x)) and the cosine function is even (cos(-x) = cos(x)), we get
sin(x - pi/6) = sin(x)cos(pi/6) - cos(x)sin(pi/6)
Thus, adding gives us
sin(x + pi/6) + sin(x - pi/6) = 2sin(x)cos(pi/6)
As cos(pi/6) = sqrt(3)/2 we get the result
sin(x + pi/6) + sin(x - pi/6) = sqrt(3)sin(x)