How do you prove sin(x+[pi/6])*sin(x-[pi/6]) = (sin x)^2 - 1/4?

1 Answer
May 4, 2016

see below

Explanation:

Use Properties: sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sin A cos B-cos A sin B

Left Side:=(sinxcos(pi/6) + cosx sin (pi/6)) xx (sinxcos(pi/6) - cosx sin (pi/6))

=sin^2xcos^2(pi/6)-cos^2xsin^2(pi/6)

=sin^2x * (sqrt3/2)^2 - cos^2x * (1/2)^2

=3/4 sin^2x-1/4 cos^2 x

=3/4 sin^2 x-1/4(1-sin^2x)

=3/4 sin^2 x-1/4+1/4 sin^2 x

=(3/4 sin^2 x+1/4 sin^2 x)-1/4

=sin^2x-1/4

= Right Side