How do you prove sin x + cos x * cot x = csc x?

1 Answer
Nov 30, 2016

We will use the following identities to attack the problem:

cotx = 1/tanx = 1/(sinx/cosx) = cosx/sinx
cscx = 1/sinx
cos^2x + sin^2x = 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

sinx + cosx * cosx/sinx = 1/sinx

sinx + cos^2x/sinx = 1/sinx

Put the left hand side on a common denominator.

sin^2x/sinx + cos^2x/sinx = 1/sinx

(sin^2x + cos^2x)/sinx= 1/sinx

1/sinx = 1/sinx

LHS = RHS

Identity proved!

Hopefully this helps!