How do you prove (sin x+ 1) / (cos x + cot x) = tan x?

1 Answer
Jun 23, 2018

Below

Explanation:

(sinx+1)/(cosx+cotx)=tanx

LHS
(sinx+1)/(cosx+cotx)

=(sinx+1)/(cosx+cosx/sinx)

=(sinx+1)/((sinxcosx+cosx)/sinx)

=(sinx^2+sinx)/(sinxcosx+cosx)

=(sinx(sinx+1))/(cosx(sinx+1))

=(sinx cancel((sinx+1)))/(cosx cancel((sinx+1)))

=sinx/cosx

=tanx

=RHS

Therefore, (sinx+1)/(cosx+cotx)=tanx