How do you prove sin(pi/6 + x) + sin (pi/6 - x)= cosxsin(π6+x)+sin(π6x)=cosx?

1 Answer
Mar 19, 2016

sin (pi/6 + x) = sin (pi/6).cos x + sin x.cos (pi/6)sin(π6+x)=sin(π6).cosx+sinx.cos(π6) (1)
sin (pi/6 - x) = sin (pi/6).cos x - sin x.cos (pi/6)sin(π6x)=sin(π6).cosxsinx.cos(π6) (2).

Add up (1) and (2) -->
Sum = 2sin (pi/6).cos xSum=2sin(π6).cosx.
Trig table gives --> sin (pi/6) = 1/2sin(π6)=12
Therefor,
S = 2(1/2)cos x = cos x.S=2(12)cosx=cosx.