How do you prove (secx)/(sinx)-(sinx)/(cosx)=cotx?

2 Answers
May 3, 2018

LHS=(secx)/(sinx)-(sinx)/(cosx)

=1/(sinxcosx)-(sinx)/(cosx)

=(1-sin^2x)/(sinxcosx)

=cos^2x/(sinxcosx)

=cosx/sinx

=cotx=RHS

May 4, 2018

secx/sinx - sinx/cosx = cotx

I'll be simplifying down the LHS of the equation to get to the RHS of the equation. The color(blue)("blue color") refers to what is being changed.

First, we know that color(blue)(sinx/cosx) is the same as color(blue)(tanx):
secx/sinx - color(blue)(tanx)

Now, multiply color(blue)(sinx/sinx) to color(blue)(tanx) so that both expressions have the same denominator:
secx/sinx - (tanxcolor(blue)(sinx))/color(blue)(sinx)

Combine both expressions to one denominator:
(secx - tanxsinx)/sinx

We know that color(blue)(secx = 1/cosx) and color(blue)(tanx = sinx/cosx):
(color(blue)(1/cosx) - color(blue)(sinx/cosx)*sinx)/sinx

Multiply color(blue)sinx with color(blue)sinx:
(1/cosx - color(blue)(sin^2x)/cosx)/sinx

Combine numerator and denominator (from the top)
(color(blue)(1-sin^2x)/cosx)/sinx

From the Pythagorean Identities, we know that color(blue)(1-sin^2x = cos^2x):
(color(blue)(cos^2x/cosx))/sinx

Divide color(blue)(cos^2x/cosx):
(color(blue)(cosx/1))/sinx

Simplify:
color(blue)(cosx)/sinx

We know that color(blue)(cosx/sinx = cotx):
color(blue)cotx

Now, the left hand side is equivalent to the right hand side, so we have proven that secx/sinx - sinx/cosx = cotx.

Hope this helps!