How do you prove sec x + sin x = tan x sin x?

1 Answer
Apr 26, 2016

This is true only for x=-\pi/4 plus multiples of \pi.

Explanation:

Since \sec(x)=1/\cos(x) and \tan(x)=\sin(x)/\cos(x), first multiply by \cos(x). Thus

1+\sin(x)\cos(x)=\sin^2(x)

Put in #1=\sin^2(x)+\cos^2(x):

\sin^2(x)+\cos^2(x)+\sin(x)\cos(x)=\sin^2(x)

\cos^2(x)+\sin(x)\cos(x)=0

\cos(x)(\cos(x)+\sin(x))=0

Thus the equation is true only if \cos(x)=0 or \cos(x)=-sin(x).

But we cannot accept \cos(x)=0 because that leaves \sec(x)=1/\cos(x) undefined. So \cos(x)=-sin(x), thus x=-\pi/4 plus multiples of \pi.