How do you prove sec x - cos x = sin x tan x?
1 Answer
Nov 13, 2015
See explanation...
Explanation:
sec(x) = 1/cos(x)
tan(x) = sin(x)/cos(x)
sin^2(x) + cos^2(x) = 1
So:
sec(x) - cos(x)
= 1/(cos(x)) - cos(x)
=1/(cos(x)) - cos^2(x)/cos(x)
=(1-cos^2(x))/cos(x)
=(sin^2(x))/cos(x)
=sin(x)sin(x)/cos(x)
=sin(x)tan(x)