How do you prove sec^2xcscx =sec^2x+csc^2x ?

2 Answers
Apr 21, 2018

Check the Problem.

Explanation:

I have doubt about the validity of the ("so called") Identity.

Had it been an Identity, it would have hold good for x=pi/4.

"For "x=pi/4, "The L.H.S."=sec^2(pi/4)csc(pi/4)

=(sqrt2)^2sqrt2=2sqrt2, whereas,

"The R.H.S.=2+2=4".

:."The L.H.S."!="The R.H.S."

In fact, sec^2xcsc^2x=sec^2x+csc^2x.

sec^2x+csc^2x=1/cos^2x+1/sin^2x,

=((sin^2x+cos^2x))/(cos^2xsin^2x),

=(1)-:{1/sec^2x*1/csc^2x},

=sec^2xcsc^2x.

Apr 21, 2018

sec^2xcscx!=sec^2x+csc^2x,...why ?
Please see below.

Explanation:

We know that,

color(blue)((1)sectheta=1/costheta and csctheta=1/sintheta

color(red)((2)sin^2theta+cos^2theta=1

Here,

LHS=color(violet)(sec^2xcscx) and RHS=sec^2x+csc^2x

We take ,

RHS=color(blue)(sec^2x+csc^2x

=color(blue)(1/cos^2x+1/sin^2x...toApply(1)

=color(red)((sin^2x+cos^2x))/(cos^2xsin^2x)

=color(red)(1)/(cos^2xsin^2x)...toApply(2)

=1/cos^2x*1/sin^2x

=color(violet)(sec^2xcsc^2x

!=LHS

Hence, sec^2xcolor(red)(cscx!=)sec^2x+csc^2x,

But, sec^2xcolor(red)(csc^2x=)sec^2x+csc^2x