How do you prove sec^2 x - cot^2 ( pi/2-x) =1?

1 Answer
Feb 5, 2016

Using the following:

  • sec(x) = 1/cos(x)
  • cot(x) = cos(x)/sin(x)
  • cos(-x) = cos(x)
  • sin(-x) = -sin(x)
  • cos(x-pi/2) = sin(x)
  • sin(x-pi/2) = -cos(x)
  • sin^2(x)+cos^2(x) = 1 => 1 - sin^2(x) = cos^2(x)

We have

sec^2(x)-cot^2(pi/2-x) = sec^2(x) - cot^2(-(x-pi/2))

=1/cos^2(x) - cos^2(-(x-pi/2))/sin^2(-(x-pi/2))

=1/cos^2(x)-cos^2(x-pi/2)/(-sin(x-pi/2))

=1/cos^2(x) - sin^2(x)/cos^2(x)

= (1-sin^2(x))/cos^2(x)

=cos^2(x)/cos^2(x)

= 1