How do you prove (cscx + cotx)^2 = (1 + cosx) / (1 - cosx)?

2 Answers
Apr 15, 2015

In this way.

The first member is:

(1/sinx+cosx/sinx)^2=(1+cosx)^2/sin^2x=(1+cosx)^2/(1-cos^2x)=

(1+cosx)^2/((1+cosx)(1-cosx))=(1+cosx)/(1-cosx),

that is the second member.

Apr 15, 2015

(csc x + cotx)^2

= (1/sin x + cos x/ sin x)^2

= (1+cosx)^2 / sin^2 x

= (1+cos x)^2 /(1-cos^2x)

=(1+cosx)^2 /((1+cos x)(1-cos x))

= (1+cos x)/(1-cosx) = RHS