We're trying to prove that csc(-x)/sec(-x)=-cotx.
You'll need to use reciprocal identities:
secx=1/cosx
cscx=1/sinx
and also angle difference formulae:
sin(x-y)=sinxcosy-cosxsiny
cos(x-y)=cosxcosy+sinxsiny
Here's the actual problem. I'll be manipulating the right side of the equation until it equals the right:
LHS=csc(-x)/sec(-x)
color(white)(LHS)=(quad1/sin(-x)quad)/(1/(cos(-x))
color(white)(LHS)=1/sin(-x)*cos(-x)/1
color(white)(LHS)=cos(-x)/sin(-x)
color(white)(LHS)=cos(0-x)/sin(0-x)
color(white)(LHS)=(cos0cosx+sin0sinx)/(sin0cosx-cos0sinx)
color(white)(LHS)=(1*cosx+0*sinx)/(0*cosx-1*sinx)
color(white)(LHS)=(1*cosx+color(red)cancelcolor(black)(0*sinx))/(color(red)cancelcolor(black)(0*cosx)-1*sinx)
color(white)(LHS)=(1*cosx)/(-1*sinx)
color(white)(LHS)=cosx/(-1*sinx)
color(white)(LHS)=-1*cosx/sinx
color(white)(LHS)=-1*cotx
color(white)(LHS)=-cotx
color(white)(LHS)=RHS
That's the proof. Hope this helped!