How do you prove csc^4[theta]-cot^4[theta]=2csc^2-1csc4[θ]cot4[θ]=2csc21?

1 Answer
May 2, 2016

See Below

Explanation:

Left Side: =csc^4 theta - cot^4 theta=csc4θcot4θ

=1/sin^4 theta - cos^4 theta /sin^4 theta=1sin4θcos4θsin4θ

=(1-cos^4 theta)/sin^4 theta=1cos4θsin4θ

=((1+cos^2 theta)(1-cos^2 theta))/sin^4 theta=(1+cos2θ)(1cos2θ)sin4θ

=((1+cos^2 theta)sin^2 theta)/sin^4 theta=(1+cos2θ)sin2θsin4θ

=(1+cos^2 theta)/sin^2 theta=1+cos2θsin2θ

=1/sin^2 theta + cos^2 theta/sin^2 theta=1sin2θ+cos2θsin2θ

=csc^2 theta +cot^2 theta=csc2θ+cot2θ---> cot^2 theta = csc^2 theta -1cot2θ=csc2θ1

=csc^2 theta+csc^2 theta -1=csc2θ+csc2θ1

=2csc^2 theta -1=2csc2θ1

==Right Side