How do you prove (Cot(x) - tan(x)) /( sin(x) cos(x)) = csc^2(x) - sec^2(x)?

1 Answer
May 5, 2016

see below

Explanation:

Left Side:=(cosx/sinx -sinx/cosx)/(sinxcosx)

=((cos^2x-sin^2x)/(sinxcosx))/(sinxcosx)

=(cos^2x-sin^2x)/(sinxcosx) xx 1/(sinxcosx)

=(cos^2x-sin^2x)/(sin^2xcos^2x)

=cos^2x/(sin^2xcos^2x) - sin^2x/(sin^2xcos^2x)

=1/sin^2x - 1/cos^2x

=csc^2x-sec^2x

= Right Side