How do you prove cot^2x - cos^2x = cot^2cos^2?

1 Answer
May 26, 2017

see below

Explanation:

to prove

cot^2x-cos^2x=cot^2xcos^2x

take LHS and change to cosines an sines and then rearrange to arrive at the RHS

=cos^2x/sin^2x-cos^2x

=(cos^2x-cos^2xsin^2x)/sin^2x

factorise numerator

=(cos^2x(1-sin^2x))/sin^2x

=>(cos^2x*cos^2x)/sin^2x

=cos^2x*(cos^2x/sin^2x)

=cos^2xcot^2x=cot^2xcos^2x

=RHS as reqd.