How do you prove cosx/(1+sinx)-2secx=cosx/(sinx-1)?

1 Answer
Apr 17, 2016

See below

Explanation:

LHS =left hand side, RHS =right hand side

LHS=(cosx/(1+sinx)) xx (1-sinx)/(1-sinx) - 2/cosx

=(cosx (1-sinx))/(1-sin^2x) -2/cosx

=(cosx(1-sinx))/cos^2x - 2/cos x

=(1-sinx)/cosx - 2/cos x

=(1-sinx-2)/cosx

=(-1-sinx)/cosx

=-(1+sinx)/cosx xx (1-sinx)/(1-sinx)

=-(1-sin^2x)/(cosx(1-sinx))

=-cos^2x/(cosx(1-sinx))

= cosx/ (-(1-sinx))

=cosx/(sinx-1)

=RHS