How do you prove #cosh(2x) = cosh²x + sinh²x#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub May 5, 2016 see below Explanation: Use formula: #cosh x=(e^x+e^-x)/2 and sinh x = (e^x-e^-x)/2# Right side:#=cosh^2x+sinh^2x# #=((e^x+e^-x)/2)^2 +((e^x-e^-x)/2)^2# #=(e^(2x)+2+e^(-2x))/4 + (e^(2x)-2+e^(-2x))/4# #=(e^(2x)+2+e^(-2x)+e^(2x)-2+e^(-2x))/4# #=(2e^(2x)+2e^(-2x))/4# #=(2(e^(2x)+e^(-2x)))/4# #=(e^(2x)+e^(-2x))/2# #=cosh (2x)# #=# Left Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 51069 views around the world You can reuse this answer Creative Commons License