How do you prove Cos(x+pi/6)-sin(x+pi/6)?

1 Answer
Jan 17, 2017

=sqrt3 /2 cos x - 1/2 sinx - sqrt3 / 2 sinx - 1/2 cos x

Explanation:

Use the formulas: cos(A+B)=cosAcosB-sinAsinB and
sin(A+B)=sinAcosB+cosAsinB

cos(x+pi/6)-sin(x+pi/6)=[cosxcos(pi/6)-sinx sin (pi/6)]-[sinx cos(pi/6)+cos x sin (pi/6)]

=[cosx (sqrt3 /2)-sinx (1/2)]-[sinx (sqrt3 /2)+cos x sin(pi/6)]

=sqrt3 /2 cos x - 1/2 sinx - sqrt3 / 2 sinx - 1/2 cos x