How do you prove cos(x + pi/6) + sin(x + pi/3) = (sqrt 3)cos x?

1 Answer
Mar 19, 2016

We use some basics like
Cos(90-A) = sinA

sin A + sin B = 2 sin (A + B)/2 cos(A - B)/2

Explanation:

let me rewrite the given LHS;

sin(x + (pi)/3) + cos(x + x/6)

sin(x + (pi)/3) + sin(pi/2-(x + pi/6))

sin(x + (pi)/3) + sin(pi/2-x - pi/6)

sin(x + (pi)/3) + sin(pi/3-x)

Now recall

sin A + sin B = 2 sin (A + B)/2 cos(A - B)/2

we get

=2 sin(( (x + (pi)/3) + (pi/3-x))/2) cos(( (x + (pi)/3) - (pi/3-x))/2)

=2 sin (pi/3) cos x

=2 * sqrt3/2 * cos x

=cancel2 * sqrt3/cancel2 * cos x

= sqrt3 cos x = RHS

QED