How do you prove {cos(x)cot(x)}/{1-sin(x)} - 1 = csc(x)?

1 Answer
May 28, 2016

LHS={cos(x)cot(x)}/{1-sin(x)} - 1

={cos(x)cot(x)}/{1-sin(x)} sinx/sinx- 1

=[(cosx*cosx)/cancelsinx*cancelsinx}/"(1-sinx)sinx"- 1

=cos^2x/"(1-sinx)sinx"- 1

=(1-sin^2x)/"(1-sinx)sinx"- 1

=((1+sinx)cancel((1-sinx)))/(cancel((1-sinx))*sinx)- 1

=((1+sinx)-sinx)/sinx
=(1+cancelsinx-cancelsinx)/sinx=1/sinx=cscx=RHS
proved