How do you prove cos(u-v)/(cosusinv)=tanu+cotv?

1 Answer
Sep 4, 2016

see explanation

Explanation:

Attempt to convert the left side into the form of the right side.

Consider the numerator of the function on the left. Using the appropriate color(blue)"addition formula"

color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(cos(A-B)=cosAcosB+sinAsinB)color(white)(a/a)|)))

rArrcos(u-v)=cosucosv+sinusinv

We now have : (cosucosv+sinusinv)/(cosusinv)

now divide the terms on the numerator by the denominator.

rArr(cancel(cosu)cosv)/(cancel(cosu)sinv)+(sinucancel(sinv))/(cosucancel(sinv))=(cosv)/(sinv)+(sinu)/(cosu)

color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(tantheta=(sintheta)/(costheta)" and " cottheta=(costheta)/(sintheta))color(white)(a/a)|)))

rArr(cosv)/(sinv)+(sinu)/(cosu)=cotv+tanu=tanu+cotv

Thus left side = right side rArr" proven"