How do you prove (cos[theta]+cot[theta])/(csc[theta]+1)= cos[theta]?

1 Answer
May 2, 2016

Using the definitions of cot(theta) and csc(theta), for sin(theta)!=0 and sin(theta)!=-1, we have

(cos(theta)+cot(theta))/(csc(theta)+1) = (cos(theta)+cos(theta)/sin(theta))/(1/sin(theta)+1)

=cos(theta)(1+1/sin(theta))/(1+1/sin(theta))

=cos(theta)*1

=cos(theta)