How do you prove cos(π2+θ)=−sin(θ)? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Arunraju Naspuri Feb 29, 2016 cos(π2+θ)=−sinθ is proved by the formula cos(a+b)=cosacosb−sinasinb. Explanation: cos(a+b)=cosacosb−sinasinb let a=π2&b=θ ⇒cos(π2+θ)=cos(π2)cos(θ)−sin(π2)sin(θ) ⇒cos(π2+θ)=(0)cosθ−(1)sinθ ⇒cos(π2+θ)=0−sinθ ⇒cos(π2+θ)=−sinθ Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 58614 views around the world You can reuse this answer Creative Commons License