How do you prove cos^4(x)-sin^4(x)=cos2x?

1 Answer
Apr 19, 2015

cos^4(x) - sin^4(x) = cos(2x)

Remember the double angle formula for cosine:
color(blue)(cos(2x)=cos^2(x)-sin^2(x)

Plugging it into the right hand side:
cos^4(x) - sin^4(x) = cos^2(x)-sin^2(x)

Using differences of squares on the left side:
(cos^2(x) + sin^2(x)) (cos^2(x) - sin^2(x)) = cos^2(x)-sin^2(x)

And since color(blue)(cos^2(x) + sin^2(x)=1
1(cos^2(x) - sin^2(x)) = cos^2(x)-sin^2(x)