How do you prove cos^4(x) - sin^4(x) = cos(2x)?

2 Answers
Apr 22, 2018

LHS=cos^4x-sin^4x

=(cos^2x+sin^2x)(cos^2x-sin^2x)

=1*cos2x=cos2x=RHS

Apr 22, 2018

See below

Explanation:

We use the following identities

a^(2n)-b^(2n)=(a^n+b^n)(a^n-b^n)

sin^2x+cos^2x=1

cos(a+b)=cosacosb-sinasinb

Proof

cos^4x-sin^4x=(cos^2x+sin^2x)(cos^2-sin^2x)=cos^2x-sin^2x=cosxcosx-sinxsinx=cos(x+x)=cos2x

square