How do you prove (cos^3beta-sin^3beta)/(cosbeta-sinbeta)=(2+sin2beta)/2?

1 Answer
Sep 18, 2016

Please see below.

Explanation:

Using the identity a^3-b^3=(a-b)(a^2+b^2+ab)

Hence (cos^3beta-sin^3beta)/(cosbeta-sinbeta)

= ((cosbeta-sinbeta)(cos^2beta+sin^2beta+sinbetacosbeta))/(cosbeta-sinbeta)

= (cos^2beta+sin^2beta+sinbetacosbeta)

= (2(1+sinbetacosbeta))/2

= (2+2sinbetacosbeta)/2

= (2+sin2beta)/2