How do you prove (cos^2alpha+cotalpha)/(cos^2alpha-cotalpha)=(cos^2alphatanalpha+1)/(cos^2alphatanalpha-1)?

1 Answer
Oct 12, 2016

see below

Explanation:

(cos^2alpha+cotalpha)/(cos^2alpha-cotalpha)=(cos^2alphatanalpha+1)/(cos^2alphatanalpha-1)

Left Side : =(cos^2alpha+cotalpha)/(cos^2alpha-cotalpha)

=(cos^2alpha+1/tanalpha)/(cos^2alpha-1/tanalpha)

=((cos^2alphatan alpha+1)/tanalpha)/((cos^2alphatanalpha-1)/tanalpha)

=(cos^2alphatan alpha+1)/tanalpha *(tanalpha)/ (cos^2alphatanalpha-1

=(cos^2alphatan alpha+1)/canceltanalpha *cancel(tanalpha)/ (cos^2alphatanalpha-1

=(cos^2alphatan alpha+1)/(cos^2alphatanalpha-1

:.= Right Side