How do you prove Arc cosh(x) = ln(x + (x^2 - 1)^(1/2))?

1 Answer
May 4, 2016

see below

Explanation:

Let y=cosh^-1x then by definition

x=cosh y =(e^y+e^-y)/2

2x=e^y+e^-y

e^y-2x+e^-y=0

e^y-2x+1/e^y=0

e^(2y)-2xe^y+1=0

Let u=e^y then we have

u^2-2xu+1=0--> Now use quadratic formula to solve

u=(2x+-sqrt(4x^2-4))/2

e^y = (2x+-sqrt(4x^2-4))/2

e^y = (2x+-sqrt(4(x^2-1)))/2

2e^y = 2x+-2sqrt(x^2-1)

e^y=x+-sqrt(x^2-1)

ln e^y = ln (x+-sqrt(x^2-1))

y=ln (x+sqrt(x^2-1))

cosh ^-1 x = ln (x+sqrt(x^2-1))