How do you solve 3 coth x + cosech ^2 x = 3?

1 Answer
Jun 3, 2016

ln (0.6)/2=-0.2554, nearly.

Explanation:

Use cosh x = (e^x+e^(-x))/2 and sinh x = (e^x-e^(-x))/2.

Now, LHS expression is

3(e^x+e^(-x))/(e^x-e^(-x))+1/((e^x-e^(-x))/2)^2

=(3(e^x+e^(-x))(e^x-e^(-x))+4)/(e^x-e^(-x))^2

=(3(e^(2x)-e^(-2x))+4)/(e^(2x)+e^(-2x)-2)

Equating to 3 and simplifying,

6e^(-2x)=10.

So, e^(2x)=0.6.

Inversely, 2x=ln 0.6 and x = ln (0.6)/2=-0.2554, nearly.