How do you prove #2tan(x)sec(x) = (1/(1-sin(x))) - (1/(1+sin(x)))#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer maganbhai P. Mar 26, 2018 Please see explanation. Explanation: Here, #2tanxsecx=1/(1-sinx)-1/(1+sinx)# We take, #RHS=1/(1-sinx)-1/(1+sinx)# #=((1+sinx)-(1-sinx))/((1+sinx)(1-sinx))# #=(cancel1+sinx-cancel1+sinx)/(1-sin^2x)# #=(2sinx)/cos^2x# #=2sinx/cosx1/cosx#, where, #sinx/cosx=tanx and 1/cosx=secx# #=2tanxsecx#, #=LHS# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 15106 views around the world You can reuse this answer Creative Commons License