How do you prove 2sinthetacos^3theta+2sin^3thetacostheta=sin2theta2sinθcos3θ+2sin3θcosθ=sin2θ?

1 Answer
Sep 18, 2016

Please see below.

Explanation:

2sinthetacos^3theta+2sin^3thetacostheta2sinθcos3θ+2sin3θcosθ

= 2sinthetacostheta(cos^2theta+sin^2theta)2sinθcosθ(cos2θ+sin2θ)

= sin2thetaxx1sin2θ×1

= sin2thetasin2θ