How do you prove (1+tany)/(1+coty)=secy/cscy?

1 Answer
Aug 25, 2016

See below.

Explanation:

Apply the following identities:

tantheta = sintheta/costheta

cottheta = 1/tantheta = 1/(sintheta/costheta) = costheta/sintheta

sectheta = 1/costheta

csctheta= 1/sintheta

Start the simplification process on both sides.

(1 + siny/cosy)/(1 + cosy/siny) = (1/cosy)/(1/siny)

Put on a common denominator:

((cosy + siny)/cosy)/((siny + cosy)/siny) = 1/cosy xx siny/1

(cosy + siny)/cosy xx siny/(siny + cosy) = siny/cosy

(cancel(cosy + siny))/cosy xx siny/(cancel(siny + cosy)) = siny/cosy

siny/cosy = siny/cosy

Identity proved!!

Hopefully this helps!