How do you prove 1secx−tanx−1secx+tanx=2tanx? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub May 11, 2016 see below Explanation: Use Property: sec2x=1+tan2x Left Side:=1secx−tanx−1secx+tanx =secx+tanx−(secx−tanx)(secx−tanx)(secx+tanx) =secx+tanx−secx+tanxsec2x−tan2x =2tanx1 =2tanx = Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 10995 views around the world You can reuse this answer Creative Commons License