How do you prove (1+sec[theta])/(tan[theta]+sin[theta])= csc[theta]? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub May 3, 2016 see below Explanation: Left Side:=(1+sec theta)/(tan theta +sin theta) =(1+1/cos theta)/(sin theta /cos theta + sin theta) =((cos theta+1)/cos theta)/((sin theta + sin theta cos theta)/cos theta) =(cos theta+1)/cos theta xx cos theta/(sin theta + sin theta cos theta) =(cos theta+1)/(sin theta + sin theta cos theta) =(cos theta+1)/(sin theta(1+cos theta)) =(cos theta+1)/(sin theta(cos theta+1)) =1/sin theta =csc theta =Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 7331 views around the world You can reuse this answer Creative Commons License