How do you prove (1+cosx)/sinx + sinx/(1+cosx) = 4?

2 Answers
Feb 23, 2016

(1+cosx)/sinx+sinx/(1+cosx)=2cscx

(not 4 as stated in the question)

Explanation:

(1+cosx)/sinx+sinx/(1+cosx)

= ((1+cosx)^2+sin^2x)/(sinx(1+cosx)

= (1+cos^2x+2cosx+sin^2x)/(sinx(1+cosx)

= (1+2cosx+sin^2x+cos^2x)/(sinx(1+cosx)

=(2+2cosx)/(sinx(1+cosx) as sin^2x+cos^2x=1

=(2(1+cosx))/(sinx(1+cosx)

= 2/sinx = 2cscx

Feb 23, 2016

The equation has solutions x = 2 arc tan ( 2 +- sqrt3)

Explanation:

Converting to functions of x/2, the equation reduces to a quadratic in tan x/2. The roots are tan x/2 = 2 +- sqrt3