How do you prove 1+(Cosθ + Sinθ)(Cosθ-Sinθ)= 2/sec^2 θ?

1 Answer
Apr 18, 2018

Below

Explanation:

1+(costheta+sintheta)(costheta-sintheta)=2/(sectheta)^2

LHS

1+(costheta+sintheta)(costheta-sintheta)

=1+((costheta)^2-sinthetacostheta+sinthetacostheta-(sintheta)^2)

=1+(costheta)^2-(sintheta)^2

=(costheta)^2+(sintheta)^2+(costheta)^2-(sintheta)^2

=2(costheta)^2

RHS

2/(sectheta)^2

=2/(1/(costheta)^2

=2(costheta)^2

=LHS

Therefore, 1+(costheta+sintheta)(costheta-sintheta)=2/(sectheta)^2