How do you prove (1-2cos^2theta)/(sinthetacostheta)=tantheta-cottheta1−2cos2θsinθcosθ=tanθ−cotθ? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Oct 7, 2016 see below Explanation: (1-2cos^2theta)/(sintheta cos theta) = tan theta-cot theta1−2cos2θsinθcosθ=tanθ−cotθ Right Side:=tan theta-cot theta=tanθ−cotθ =sin theta/cos theta - cos theta/sin theta=sinθcosθ−cosθsinθ =(sin^2 theta-cos^2 theta)/(sin theta cos theta)=sin2θ−cos2θsinθcosθ =(1-cos^2 theta -cos^2 theta)/(sin theta cos theta)=1−cos2θ−cos2θsinθcosθ =(1-2cos^2 theta)/(sin theta cos theta)=1−2cos2θsinθcosθ :.=Left Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 6868 views around the world You can reuse this answer Creative Commons License