How do you prove (1-2cos^2theta)/(sinthetacostheta)=tantheta-cottheta12cos2θsinθcosθ=tanθcotθ?

1 Answer
Oct 7, 2016

see below

Explanation:

(1-2cos^2theta)/(sintheta cos theta) = tan theta-cot theta12cos2θsinθcosθ=tanθcotθ

Right Side:=tan theta-cot theta=tanθcotθ

=sin theta/cos theta - cos theta/sin theta=sinθcosθcosθsinθ

=(sin^2 theta-cos^2 theta)/(sin theta cos theta)=sin2θcos2θsinθcosθ

=(1-cos^2 theta -cos^2 theta)/(sin theta cos theta)=1cos2θcos2θsinθcosθ

=(1-2cos^2 theta)/(sin theta cos theta)=12cos2θsinθcosθ

:.=Left Side