How do you prove 1/(1-cos)-1/(1+cos)= 2csc^2?

1 Answer
May 17, 2015

The - sign in the question should be a +.

1/(1-cos theta)+1/(1+cos theta)

= (1/(1-cos theta))((1+cos theta)/(1+cos theta)) + (1/(1+cos theta))((1-cos theta)/(1-cos theta))

= (1+cos theta)/(1-cos^2 theta) + (1-cos theta)/(1-cos^2 theta)

= ((1+cos theta) + (1-cos theta))/(1-cos^2 theta)

= 2/(sin^2 theta)

= 2(1/sin^2 theta)

= 2(1/sin theta)^2

= 2csc^2 theta

If you try the same thing with 1/(1-cos theta)-1/(1+cos theta) you will get the result 2 cos theta csc^2 theta.