As (x^2+2x-1)/(x^3-x)=(x^2+2x-1)/(x(x+1)(x-1)), let us convert them into partial fractions
(x^2+2x-1)/(x^3-x)hArrA/x+B/(x+1)+C/(x-1) or
(x^2+2x-1)/(x^3-x)=(A(x^2-1)+B(x^2-x)+C(x^2+x))/(x(x+1)(x-1)) or
(x^2+2x-1)/(x^3-x)=((A+B+C)x^2+(-B+C)x-A)/(x(x+1)(x-1)) i.e.
A+B+C=1, -B+C=2 and A=1,
which gives C=1 and B=-1 and hence
(x^2+2x-1)/(x^3-x)=1/x-1/(x+1)+1/(x-1) and
int(x^2+2x-1)/(x^3-x)dx=int[1/x-1/(x+1)+1/(x-1)]dx
= lnx-ln(x+1)+ln(x-1)+c