How do you integrate (1+x)/(1-x)?

1 Answer
Mar 8, 2018

-2ln|1-x|-x+C

Explanation:

Given: int(1+x)/(1-x) \ dx

We know that (1+x)/(1-x)=(2-(1-x))/(1-x)

=2/(1-x)-1

Now, we got int(2/(1-x)-1) \ dx

Using the sum rule, int(f(a)+f(b)) \ dx=intf(a)+intf(b)

So, we have

=int2/(1-x) \ dx-int1 \ dx

Now, we use u-substitution to compute int2/(1-x) \ dx.

Let u=1-x, then (du)/(dx)=-1,dx=(du)/-1=-du.

=int2/u*-du-int1 \ dx

=-int2/u \ du-x

=-2int1/u \ du-x

=-2ln|u|-x

Reversing the substitution that u=1-x, we get

=-2ln|1-x|-x

Now, we add a constant, and our final answer is

color(blue)(barul(|-2ln|1-x|-x+C|)).