We have to divide polinomials:
(2x^3-3x^2+x+1):(-2x+1)=-x^2+x(2x3−3x2+x+1):(−2x+1)=−x2+x
-2x^3+x^2−2x3+x2
----−−−−
-2x^2+x+1−2x2+x+1
+2x^2-x+2x2−x
----−−−−
11
(2x^3-3x^2+x+1)/(-2x+1)=-x^2+x+1/(-2x+1)2x3−3x2+x+1−2x+1=−x2+x+1−2x+1
int(2x^3-3x^2+x+1)/(-2x+1)dx=∫2x3−3x2+x+1−2x+1dx=
=int(-x^2+x+1/(-2x+1))dx==∫(−x2+x+1−2x+1)dx=
=-intx^2dx+intxdx-intdx/(2x-1)=I=−∫x2dx+∫xdx−∫dx2x−1=I
2x-1=t, 2dx=dt, dx=dt/22x−1=t,2dx=dt,dx=dt2
I=-x^3/3+x^2/2-intdt/2 1/t= I=−x33+x22−∫dt21t=
=-x^3/3+x^2/2-1/2lnabs(2x-1)+C=−x33+x22−12ln|2x−1|+C