How do you integrate #((4x^2-1)^2)/x^3dx #? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Ananda Dasgupta Apr 12, 2018 # 8x^2-8 ln x-1/(2x^2)+C# Explanation: #((4x^2-1)^2)/x^3 = (16x^4-8x^2+1)/x^3=16x-8/x+1/x^3# Thus #int ((4x^2-1)^2)/x^3dx = int (16x-8/x+1/x^3)dx# #qquad = 8x^2-8 ln x-1/(2x^2)+C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #(x+3) / sqrt(x) dx#? How do you find the integral of #(x^4+x-4) / (x^2+2)#? See all questions in Integrals of Rational Functions Impact of this question 7630 views around the world You can reuse this answer Creative Commons License