How do you integrate #((x^2) / (16-x^3)^2) dx#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Sasha P. Sep 13, 2015 #1/(3(16-x^3))+C# Explanation: Choose #t=16-x^3#, then #dt=-3x^2dx => x^2dx=-dt/3# #intx^2/(16-x^3)^2dx=int1/t^2(-dt/3)=-1/3intt^(-2)dt=# #=-1/3 t^(-1)/-1+C=1/3 1/t+C=1/(3(16-x^3))+C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 4019 views around the world You can reuse this answer Creative Commons License