How do you integrate #36/(2x+1)^3#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer VinÃcius Ferraz May 21, 2018 #-9/(2x + 1)^2 + C# Explanation: #u = 2x + 1 Rightarrow du = 2 cdot dx# #int 36/u^3 cdot {du}/2 = 18 int u^{-3} cdot du# #= 18 u^{-2}/{-2} + C = -9/u^2 + C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 4593 views around the world You can reuse this answer Creative Commons License