How do you integrate #1/(x^2+4)#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Eddie Jul 4, 2016 #= 1/2 arctan (x/2) + C# Explanation: #int dx qquad 1/(x^2+4)# use sub #x^2 = 4 tan^2 psi# so #x = 2 tan psi, dx = 2 sec^2 psi \ d psi# integral becomes #int dpsi qquad 2 sec^2 psi *1/(4 tan^2 psi^2+4)# #= 1/2 int dpsi qquad (sec^2 psi)/(sec^2 psi)# #= 1/2 int dpsi qquad # #= 1/2 psi + C# #= 1/2 arctan (x/2) + C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 1394 views around the world You can reuse this answer Creative Commons License