How do you graph y=2-5tan(x+pi/3)y=25tan(x+π3)?

1 Answer
Jul 31, 2018

See graph and details.

Explanation:

y = 2 - 5 tan ( x + pi/3 )y=25tan(x+π3), asymptotic x + pi/3 ne ( 2 k + 1 ) pi/2,x+π3(2k+1)π2,

k = 0, +-1, +-2, +-3, ... rArr x ne ( k + 1/6)pi

The period = pi

Zeros: tan ( x + pi/3 ) = 2/5 rArr x + pi/3 = k pi + arctan (2/5 ),

k = 0, +-1, +-2, +-3,..

rArr x = ( k - 1/3 )pi + arctan ( 2/5 )

See graph.
graph{(y-2+5tan(x+pi/3))=0[-20 20 -10 10]}