How do you find the equation of a circle in standard form given C(-2,8) and r=4?

1 Answer
Feb 3, 2017

The equation of circle is (x+2)^2 +(y-8)^2=16(x+2)2+(y8)2=16

Explanation:

The equation of circle in standard form is (x-h^2) + (y-k)^2 =r^2(xh2)+(yk)2=r2 , where (h,k)(h,k) is co-ordinate of centre and rr is the radius of circle.

So The equation of circle is (x - (-2))^2 + (y-8)^2 =4^2 or (x+2)^2 +(y-8)^2=16(x(2))2+(y8)2=42or(x+2)2+(y8)2=16 [Ans]