How do you find the derivative of #sqrt (1+3x) using the limit definition? Calculus Derivatives Limit Definition of Derivative 1 Answer Euan S. Jul 30, 2016 #f'(x)= 3/(2sqrt(1+3x))# Explanation: #f'(x) = lim_(hrarr0) (f(x+h) - f(x))/h# #=lim_(hrarr0) (sqrt(1+3(x+h)) - sqrt(1+3x))/h# Multiply numerator and denominator by #sqrt(1+3(x+h)) + sqrt(1+3x)# #lim_(hrarr0) (sqrt(1+3(x+h)) - sqrt(1+3x))/h(sqrt(1+3(x+h)) + sqrt(1+3x))/(sqrt(1+3(x+h)) + sqrt(1+3x))# #lim_(hrarr0) (1+3(x+h) - (1+3x))/(h(sqrt(1+3(x+h)) + sqrt(1+3x)))# #lim_(hrarr0) (3h)/(h(sqrt(1+3(x+h)) + sqrt(1+3x)))# #lim_(hrarr0) 3/(sqrt(1+3(x+h)) + sqrt(1+3x)) = 3/(2sqrt(1+3x))# Answer link Related questions What is the limit definition of the derivative of the function #y=f(x)# ? Ho do I use the limit definition of derivative to find #f'(x)# for #f(x)=3x^2+x# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=sqrt(x+3)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=1/(1-x)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=x^3-2# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=1/sqrt(x)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=5x-9x^2# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=sqrt(2+6x)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=mx+b# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=c# ? See all questions in Limit Definition of Derivative Impact of this question 5285 views around the world You can reuse this answer Creative Commons License