How do I use the limit definition of derivative to find f'(x) for f(x)=sqrt(x+3) ?

1 Answer
May 25, 2018

d/dx (sqrt(x+3)) = 1/ (2sqrt(x+3)

Explanation:

By definition:

d/dx (sqrt(x+3)) = lim_(h->0) (sqrt(x+h+3)-sqrt(x+3))/h

d/dx (sqrt(x+3)) = lim_(h->0) ((sqrt(x+h+3)-sqrt(x+3))/h)( (sqrt(x+h+3)+sqrt(x+3))/ (sqrt(x+h+3)+sqrt(x+3)))

d/dx (sqrt(x+3)) = lim_(h->0) ((x+h+3)-(x+3))/(h (sqrt(x+h+3)+sqrt(x+3))

d/dx (sqrt(x+3)) = lim_(h->0) h/(h (sqrt(x+h+3)+sqrt(x+3))

d/dx (sqrt(x+3)) = lim_(h->0) 1/ (sqrt(x+h+3)+sqrt(x+3)

d/dx (sqrt(x+3)) = 1/ (2sqrt(x+3)